direct product, metabelian, soluble, monomial
Aliases: C3×C4⋊(C32⋊C4), (C3×C12)⋊5C12, C33⋊8(C4⋊C4), C12⋊3(C32⋊C4), C3⋊Dic3⋊7C12, (C32×C12)⋊4C4, C4⋊(C3×C32⋊C4), C32⋊5(C3×C4⋊C4), C3⋊S3.4(C3×D4), C2.5(C6×C32⋊C4), C3⋊S3.2(C3×Q8), (C3×C3⋊S3).5Q8, (C4×C3⋊S3).12C6, (C3×C3⋊S3).14D4, (C6×C32⋊C4).3C2, (C2×C32⋊C4).3C6, C6.22(C2×C32⋊C4), (C12×C3⋊S3).19C2, (C3×C6).13(C2×C12), (C3×C3⋊Dic3)⋊11C4, (C6×C3⋊S3).39C22, (C32×C6).11(C2×C4), (C2×C3⋊S3).14(C2×C6), SmallGroup(432,631)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C2×C3⋊S3 — C6×C3⋊S3 — C6×C32⋊C4 — C3×C4⋊(C32⋊C4) |
Generators and relations for C3×C4⋊(C32⋊C4)
G = < a,b,c,d,e | a3=b4=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b-1, ede-1=cd=dc, ece-1=c-1d >
Subgroups: 444 in 96 conjugacy classes, 28 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C4⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C32⋊C4, S3×C6, C2×C3⋊S3, C3×C4⋊C4, C3×C3⋊S3, C32×C6, S3×C12, C4×C3⋊S3, C2×C32⋊C4, C3×C3⋊Dic3, C32×C12, C3×C32⋊C4, C6×C3⋊S3, C4⋊(C32⋊C4), C12×C3⋊S3, C6×C32⋊C4, C3×C4⋊(C32⋊C4)
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C4⋊C4, C2×C12, C3×D4, C3×Q8, C32⋊C4, C3×C4⋊C4, C2×C32⋊C4, C3×C32⋊C4, C4⋊(C32⋊C4), C6×C32⋊C4, C3×C4⋊(C32⋊C4)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 30 47)(14 31 48)(15 32 45)(16 29 46)(17 21 28)(18 22 25)(19 23 26)(20 24 27)(33 44 38)(34 41 39)(35 42 40)(36 43 37)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(13 47 30)(14 48 31)(15 45 32)(16 46 29)(33 44 38)(34 41 39)(35 42 40)(36 43 37)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 47 30)(14 48 31)(15 45 32)(16 46 29)(17 21 28)(18 22 25)(19 23 26)(20 24 27)(33 44 38)(34 41 39)(35 42 40)(36 43 37)
(1 30 17 34)(2 29 18 33)(3 32 19 36)(4 31 20 35)(5 13 28 39)(6 16 25 38)(7 15 26 37)(8 14 27 40)(9 47 21 41)(10 46 22 44)(11 45 23 43)(12 48 24 42)
G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,30,47)(14,31,48)(15,32,45)(16,29,46)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (13,47,30)(14,48,31)(15,45,32)(16,46,29)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,47,30)(14,48,31)(15,45,32)(16,46,29)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,30,17,34)(2,29,18,33)(3,32,19,36)(4,31,20,35)(5,13,28,39)(6,16,25,38)(7,15,26,37)(8,14,27,40)(9,47,21,41)(10,46,22,44)(11,45,23,43)(12,48,24,42)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,30,47)(14,31,48)(15,32,45)(16,29,46)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (13,47,30)(14,48,31)(15,45,32)(16,46,29)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,47,30)(14,48,31)(15,45,32)(16,46,29)(17,21,28)(18,22,25)(19,23,26)(20,24,27)(33,44,38)(34,41,39)(35,42,40)(36,43,37), (1,30,17,34)(2,29,18,33)(3,32,19,36)(4,31,20,35)(5,13,28,39)(6,16,25,38)(7,15,26,37)(8,14,27,40)(9,47,21,41)(10,46,22,44)(11,45,23,43)(12,48,24,42) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,30,47),(14,31,48),(15,32,45),(16,29,46),(17,21,28),(18,22,25),(19,23,26),(20,24,27),(33,44,38),(34,41,39),(35,42,40),(36,43,37)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(13,47,30),(14,48,31),(15,45,32),(16,46,29),(33,44,38),(34,41,39),(35,42,40),(36,43,37)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,47,30),(14,48,31),(15,45,32),(16,46,29),(17,21,28),(18,22,25),(19,23,26),(20,24,27),(33,44,38),(34,41,39),(35,42,40),(36,43,37)], [(1,30,17,34),(2,29,18,33),(3,32,19,36),(4,31,20,35),(5,13,28,39),(6,16,25,38),(7,15,26,37),(8,14,27,40),(9,47,21,41),(10,46,22,44),(11,45,23,43),(12,48,24,42)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 4A | 4B | ··· | 4F | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | 12A | 12B | 12C | ··· | 12N | 12O | ··· | 12X |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 |
size | 1 | 1 | 9 | 9 | 1 | 1 | 4 | ··· | 4 | 2 | 18 | ··· | 18 | 1 | 1 | 4 | ··· | 4 | 9 | 9 | 9 | 9 | 2 | 2 | 4 | ··· | 4 | 18 | ··· | 18 |
54 irreducible representations
Matrix representation of C3×C4⋊(C32⋊C4) ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
1 | 11 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 9 | 0 |
0 | 0 | 1 | 0 | 0 | 3 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 9 | 0 | 0 |
0 | 0 | 3 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
8 | 0 | 0 | 0 | 0 | 0 |
8 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 1 | 12 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,4,1,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,3,3,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,3],[8,8,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,2,12,12,12,0,0,0,1,0,0] >;
C3×C4⋊(C32⋊C4) in GAP, Magma, Sage, TeX
C_3\times C_4\rtimes (C_3^2\rtimes C_4)
% in TeX
G:=Group("C3xC4:(C3^2:C4)");
// GroupNames label
G:=SmallGroup(432,631);
// by ID
G=gap.SmallGroup(432,631);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,365,176,14117,362,18822,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,e*d*e^-1=c*d=d*c,e*c*e^-1=c^-1*d>;
// generators/relations